Noise reduction through compressed sensing
نویسندگان
چکیده
We present an exemplar-based method for noise reduction using missing data imputation: A noise-corrupted word is sparsely represented in an over-complete basis of exemplar (clean) speech signals using only the uncorrupted time-frequency ele ments of the word. Prior to recognition the parts of the spectro gram dominated by noise are replaced by clean speech estimates obtained by projecting the sparse representation in the basis. Since at low SNRs individual frames may contain few, if any, uncorrupted coefficients, the method tries to exploit all reliable information that is available in a word-length time window. We study the effectiveness of this approach on the Interspeech 2008 Consonant Challenge (VCV) data as well as on AURORA-2 data. Using oracle masks, we obtain obtain accuracies of 36 44% on the VCV data. On AURORA-2 we obtain an accuracy of 91% at SNR -5 dB, compared to 61% using a conventional frame-based approach, clearly illustrating the great potential of the method.
منابع مشابه
Frames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملNoise Synthetic Aperture Radar (SAR) Imagery Compressing and Reconstruction Based on Compressed Sensing
In this paper, a denoise approach is proposed to reduce the speckle noise in SAR images based on compress sensing. Through the skill of compressed sensing, we divide the image into some blocks, and propose an image reconstruction method based on block compressing sensing with Orthogonal Matching Pursuit. By adding some simulated speckle noise in the SAR image, the performance of the proposed ap...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملRobust reconstruction algorithm for compressed sensing in Gaussian noise environment using orthogonal matching pursuit with partially known support and random subsampling
The compressed signal in compressed sensing (CS) may be corrupted by noise during transmission. The effect of Gaussian noise can be reduced by averaging, hence a robust reconstruction method using compressed signal ensemble from one compressed signal is proposed. The compressed signal is subsampled for L times to create the ensemble of L compressed signals. Orthogonal matching pursuit with part...
متن کاملCompressed Sensing Algorithms for OFDM Channel Estimation
Radio channels are typically sparse in the delay domain, and ideal for compressed sensing. A new compressed sensing algorithm called eX-OMP is developed that yields performance similar to that of the optimal MMSE estimator. The new algorithm relies on a small amount additional data. Both eX-OMP and the MMSE estimator adaptively balance channel tracking and noise reduction. They perform better t...
متن کاملNoise driven compressed sensing method for space time signal processing
In contrary to the existing work related with compressed sensing based STAP technique, which adopts the original sensing matrix, the proposed noise driven compressed sensing method is to construct a new sensing matrix with weak coherence through incorporating the measurement noise. The proposed method tries to build an equivalent system of the classical model in compressed sensing, resulting in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008